Exam Calculus 2

9 April 2024, 18:15-20:15

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points. Calculators, books and notes are not permitted.

1. [6+6+8=20 Points] Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) = \begin{cases} \frac{x^2y + y^3 + 2x^2 + 2y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ c & \text{if } (x,y) = (0,0) \end{cases},$$

where $c \in \mathbb{R}$.

- (a) Determine c such that f becomes continuous at (x, y) = (0, 0).
- (b) For the value of c found in part (a) and $u = (v, w) \in \mathbb{R}^2$ a unit vector, determine the directional derivative $D_{\boldsymbol{u}}f(0,0)$.
- (c) Use the definition of differentiability to show that for the value of c found in part (a), the function f is differentiable at (x, y) = (0, 0) and determine the derivative of f at (x, y) = (0, 0).
- 2. [5+8+9=22 Points] The surface $S \subset \mathbb{R}^3$ given by the equation

$$4x^2 + y^2 - 4z^2 - 8x + 2y + 4z + 8 = 0$$

is a hyperboloid of two sheets which contains the point $(x_0, y_0, z_0) = (2, 0, 2)$.

- (a) Find the tangent plane at the point (x_0, y_0, z_0) using the fact that S is the level set of a suitable function $g: \mathbb{R}^3 \to \mathbb{R}$.
- (b) Use the Implicit Function Theorem to show that near the point (x_0, y_0, z_0) , the surface S can be considered to be the graph of a function f of the variables x and z. Compute the partial derivatives f_x and f_z at (x_0, z_0) and show that the tangent plane found in part (a) coincides with the graph of the linearization of f at (x_0, z_0) .
- (c) Use the method of Lagrange multipliers to find the point(s) in S closest to the (x, y)-plane.

3. [6+12+5=23 Points] Consider the vector field $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ defined as

$$\mathbf{F}(x,y,z) = (2x+z)\cos(x^2+xz)\,\mathbf{i} - (z+1)\sin(y+yz)\,\mathbf{j} + \left(x\cos(x^2+xz) - y\sin(y+yz)\right)\mathbf{k}$$
 for each $(x,y,z) \in \mathbb{R}^3$.

- (a) Show that **F** is conservative.
- (b) Determine a potential function for F.
- (c) Let $C \in \mathbb{R}^3$ be the curve with parametrization $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j} + (\pi t \sin \frac{\pi t}{2}) \mathbf{k}$ with $0 \le t \le 1$. Compute the line integral $\int_C \mathbf{F} \cdot d\mathbf{s}$ with C oriented by the tangent vectors associated with the parametrization \mathbf{r} .
- 4. [3+22=25 Points] Let $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ be the vector field defined as

$$\mathbf{F}(x, y, z) = \mathbf{k} \times (x \,\mathbf{i} + y \,\mathbf{j} + z \,\mathbf{k})$$

for $(x, y, z) \in \mathbb{R}^3$. Let S be the surface $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, y = z\}$ oriented by the normal vector (0, -1, 1).

- (a) Sketch the surface S and mark the induced orientation on the boundary ∂S of S.
- (b) Verify Stokes's theorem for \mathbf{F} and S by computing both sides of the equality

$$\iint_S (\nabla \times \mathbf{F}) \cdot \mathrm{d}\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot \mathrm{d}\mathbf{s}.$$

Solutions

1. (a) In order to determine the limit of f at (x, y) = (0, 0) we use polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ for $(x, y) \neq (0, 0)$. Then

$$f(x,y) = \frac{r^3 \cos^2 \theta \sin \theta + r^3 \sin^3 \theta + 2r^2 \cos^2 \theta + 2r^2 \sin^2 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta}$$

= $r(\cos^2 \theta \sin \theta + \sin^3 \theta) + 2$.

Considering the limit $r \to 0$ yields that f becomes continuous at (x, y) = (0, 0) for c = 2.

(b) Let $\mathbf{u} = (v, w) \in \mathbb{R}^2$ with $v^2 + w^2 = 1$. Then

$$D_{u}f(0,0) = \lim_{h \to 0} \frac{f(hv, hw) - f(0,0)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{h^{3}v^{2}w + h^{3}w^{3} + 2h^{2}v^{2} + 2h^{2}w^{2}}{h^{2}(v^{2} + w^{2})} - 2 \right)$$

$$= \lim_{h \to 0} \frac{1}{h^{3}} \left(h^{3}v^{2}w + h^{3}w^{3} + 2h^{2} - 2h^{2} \right)$$

$$= \lim_{h \to 0}$$

$$= v^{2}w + w^{3}$$

$$= w(v^{2} + w^{2})$$

$$= w$$

where in the third and last equality we used $v^2 + w^2 = 1$.

(c) According to part (b) we have $f_x(0,0) = 0$ (choose $\mathbf{u} = (v,w) = (1,0)$) and $f_y(0,0) = 1$ (choose $\mathbf{u} = (v,w) = (0,1)$). So the linearization of f at (x,y) = (0,0) is given by

$$L(x,y) = f(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0) = 2 + y.$$

For the differentiability of f at (0,0) we have that the limit of

$$\frac{f(x,y) - L(x,y)}{\|(x,y) - (0,0)\|}$$

is 0 for $(x,y) \to (0,0)$. For $(x,y) \neq (0,0)$, we have

$$\frac{f(x,y) - L(x,y)}{\|(x,y) - (0,0)\|} = \frac{1}{(x^2 + y^2)^{1/2}} \left(\frac{x^2y + y^3 + 2x^2 + 2y^2}{x^2 + y^2} - (2+y) \right)
= \frac{1}{(x^2 + y^2)^{3/2}} \left(x^2y + y^3 + 2x^2 + 2y^2 - 2(x^2 + y^2) - y(x^2 + y^2) \right)
= \frac{1}{(x^2 + y^2)^{3/2}} (0)$$

which converges to 0 as $(x,y) \to (0,0)$. The function f is hence differentiable at (x,y) = (0,0).

The derivative is

$$\nabla f(0,0) = (f_x(0,0), f_y(0,0)) = (0,1).$$

2. (a)
$$3(x_1x_1z_1) = 4x^2 + y^2 - 4z^2 - 8x + 2y + 4z + 8$$

$$= 5(x_1x_1z_1) = (8x - 8, 2y + 2, -8z + 4)$$

$$= 5(2,0,2) = (16 - 8, 2, -16 + 4)$$

$$= (8,2,-12)$$

+aujunt plane of S' at $(x_0, y_0, \xi_0) = (z_10, z) = 0$ $\forall g(x_0, y_0, \xi_0) \circ (x_0, y_0, \xi_0) = 0$ $(=> (8, 2, -12) \circ (x_0, y_0, \xi_0) = 0$

(=) 8x-16+2y-12z+24=0

(=) 4x+8y-62 = -4

(b) $\frac{2}{3}(x_0, y_0, z_0) = 2y_0 + 2 = 2 \neq 0$ $\Rightarrow \text{ by ITT} \quad \exists \int ! U c \mathbb{R}^2 - 3 \mathbb{R} \text{ s.t. with}$ $U \text{ reglab. of } (x_0, z_0) \in \mathbb{R}^2 \text{ s.t.}$ $U \text{ reglab. of } (x_0, z_0) \in \mathbb{R}^2 \text{ s.t.}$ $U \text{ reglab. of } (x_0, z_0) \in \mathbb{R}^2 \text{ s.t.}$

A (2) g(x, lighter, 2) = 0 and yeV

RoV works. of

moreove:

$$\int_{X} (x_{0}, \xi_{0}) = -\frac{\Im x (x_{0}, \chi_{0}, \xi_{0})}{\Im x (x_{0}, \xi_{0}, \xi_{0})} = -\frac{8}{3} - 4$$

$$\begin{cases}
\frac{3}{2} (x_0, x_0, x_0) = -\frac{3}{2} (x_0, x_0, x_0) = -\frac{12}{2} = 6
\end{cases}$$
Universalson of f at (x_0, x_0)

$$L(x, x_0) = \int (x_0, x_0) + \int_{x_0} (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) + \int_{x_0} (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) + \int_{x_0} (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) + \int_{x_0} (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) + \int_{x_0} (x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0)$$

$$L(x, x_0) = \int (x_0, x_0) (x_0, x_0)$$

$$L(x,$$

graph of L:

$$Y = -4x + 8 + 62 - 12$$

$$4x + 8 - 62 = -4$$

$$4x + 8 - 62 = -4$$

$$blid agrees with partla).$$

(c) let (x,y,z) & D. The square distance of

(x,y,z) to the (x,y) plane is $2^2 = i d(x,y,z)$ For Refresed points of does holded to S'

(x,y,z)

3 Jess s.t.

$$\frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{4} = \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = \frac{1}{4} \frac{1}{$$

fillu
$$[1,-1,\frac{3}{2}]$$
 into $d = (\frac{3}{2})^2 = \frac{3}{4}$ -) into $d = (\frac{1}{2})^2 = \frac{1}{4}$ -) into $d = (\frac{1}{2})^2 = \frac{1}{4}$

La streets)

3

(a) Writing the vector field F as

$$\mathbf{F} = Q(x, y, z) \mathbf{i} + P(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$$

the vector equation $\nabla f = \mathbf{F}$ has the components

$$\frac{\partial f}{\partial x} = Q(x, y, z) = (2x + z)\cos(x^2 + xz),\tag{1}$$

$$\frac{\partial f}{\partial y} = P(x, y, z) = -(z+1)\sin(y+yz), \tag{2}$$

$$\frac{\partial f}{\partial z} = R(x, y, z) = x \cos(x^2 + xz) - y \sin(y + yz). \tag{3}$$

Integrating Equation (1) with respect to x gives

$$f(x, y, z) = \int (2x + z) \cos(x^2 + xz) dx$$
$$= \int \cos u du$$
$$= \sin(x^2 + xz) + g(y, z),$$

where in between we substituted $u = x^2 + xz$ and g(y, z) stands for an integration constant which can depend on y and z. Filling in $f(x, y, z) = \sin(x^2 + xz) + g(y, z)$ in Equation (2) gives

$$g(y, z) = \int -(z+1)\sin(y+yz) dy$$
$$= -\int \sin u du$$
$$= \cos(y+yz) + h(z),$$

where in between we substituted u = y + yz and h(z) is an integration constant which can depend on z. Thus f becomes

$$f(x, y, z) = \sin(x^2 + xz) + \cos(y + yz) + h(z)$$

which when filled into Equation (3) gives

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} [\sin(x^2 + xz) + \cos(y + yz) + h(z)]$$
$$= x \cos(x^2 + xz) - y \sin(y + yz) + \frac{d}{dz} h(z).$$

Equating the latter with R(x, y, z) shows that $\frac{d}{dz}h(z) = 0$, i.e. h(z) = c for some $c \in \mathbb{R}$. The potential function thus is

$$f(x, y, z) = \sin(x^2 + xz) + \cos(y + yz) + c.$$

(b) As \mathbf{F} is conservative with potential function f found in part (a) we have by the fundamental theorem of line integrals

$$\int_{\mathbf{x}} \mathbf{F}(x, y, z) \cdot d\mathbf{s} = \int_{0}^{1} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt = f(\mathbf{x}(1)) - f(\mathbf{x}(0)).$$

$$f(\mathbf{x}(t)) = \sin(t^6 + t^3(\pi t - \sin(\frac{\pi t}{2}))) + \cos(t^2 + t^2(\pi t - \sin(\frac{\pi t}{2}))) + c.$$

Thus,

$$f(\mathbf{x}(1)) - f(\mathbf{x}(0)) = (\sin \pi + \cos \pi) - (\sin 0 + \cos 0)$$

= -1 - 1 = -2.

Thus, we conclude that $\int_{\mathbf{x}} \mathbf{F}(x, y, z) \cdot d\mathbf{s} = -2$.

- 2.
 - (b) Noticing that the cone shaped region is given by $f(x, y, z) = x^2 + y^2 z^2 = 0$ we can find a normal vector at (x, y, z) on the cone as $\nabla \cdot (x, y, z) = 2x \mathbf{i} + 2y \mathbf{j} 2z \mathbf{k}$. Normalizing this vector gives the unit normal vector

$$\mathbf{n}_1 = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x \, \mathbf{i} + y \, \mathbf{j} - z \, \mathbf{k})$$

which indeed is pointing outward. Alternatively the normal vector can be compute from a parametrization \mathbf{X} of the cone. Using cylinder coordinates we can choose

$$\mathbf{X}(\theta, r) = r \cos \theta \,\mathbf{i} + r \sin \theta \,\mathbf{j} + r \,\mathbf{k}$$

with $0 \le \theta \le 2\pi$ and $1 \le r \le 9$. For the normal vector we then find

$$\frac{\partial \mathbf{X}}{\partial \theta} \times \frac{\partial \mathbf{X}}{\partial r} = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} - r \mathbf{k}$$

which has norm $\sqrt{3}r$. Normalizing this vector agrees with \mathbf{n}_1 found above.

4.

-2-

RHS: parametrotation of OS:

(H) = (cost, slut, slut) te(qti)

(H) = (slut, cost, cost)

St.ds = ST(r(d)). r'(d) dt

OS ON SIMPS (cost j-slut i). (-sluti teat)

+ costh)

dt

= [(slu²t + cos²) dt

= 757